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1. Introduction

Preserving chiral symmetry presented a notorious difficulty for the early formulations of

lattice Quantum Chromodynamics (QCD). The problem stemmed from the fact that an

ultralocal discretization of the Dirac equation must either abandon full chiral symmetry or

introduce extra fermionic degrees of freedom (doublers), with associated no-go theorems

for lattice fermions [1, 2]. It was only about a decade ago that seminal work by Kaplan,

Shamir, Neuberger, Narayanan, and others provided a way out of the impasse, through

the introduction of domain-wall [3, 4] and overlap [5 – 7] formulations of lattice fermions.

These two closely related discretizations of the Dirac equation avoid the no-go theorems by

forfeiting ultralocality, while retaining locality, and satisfy an identity, the Ginsparg-Wilson

relation [8], which allows one to extend to the lattice the chiral symmetry of continuum

QCD [9]. Unfortunately, the satisfactory properties of the new lattice formulations come

with a heavy computational cost, since they entail either extension of the lattice in a fifth

dimension or very demanding large matrix manipulations. It is therefore important to

subject these novel discretizations to the test of lattice QCD simulations on systems of re-

alistically large size, in order to explore the adequacy of the necessary numerical techniques

and to validate the good properties that are expected to follow from the preservation of

chiral symmetry. In this paper, we present the results of such an investigation, where we

used the overlap Dirac operator to simulate quenched QCD on two lattices, of size 183 ×64

and 143 × 48.

One early simulation of quenched QCD with overlap quarks was performed in [10, 11].

Pioneering investigations of QCD with the overlap fermion discretization were also pre-

sented in [12 – 23]. In the work of [10, 11], quenched QCD was simulated with the Wilson

gauge action at β = 6 on a lattice of size 163 × 32. An expansion into fractions, after

projection of a small number of low lying eigenvectors, was used to calculate the overlap

Dirac operator. It was shown that the available computational methods could produce

accurate results for the quark propagators in a reasonable amount of time with moder-

ately powerful computer resources (capable of 10 to 20 Gflops sustained). Satisfactory

results were obtained on the pseudoscalar spectrum, strange quark mass, quark conden-

sate, renormalization constants, and a few other observables, and the good chiral behavior

of the theory was verified. It also became apparent, however, that the extent of the lattice

in the temporal direction was too small for a meaningful calculation of other parameters

of the hadron spectrum, such as vector meson and baryon masses, as well as for a reliable

estimate of important matrix elements. We decided therefore to extend the scope of the

investigation by considering a bigger lattice, with a time extent twice as large. The spatial

extent was also slightly increased, with the final choice of lattice size, 183 × 64, motivated

by a careful assessment of the computer resources we could rely upon. After completing

the calculation of the quark propagators on the 183×64 lattice, we also simulated a system

of size 143 × 48, with correspondingly coarser lattice spacing, in order to check scaling.

For the calculations described in this paper we simulated quenched QCD with Wilson

gauge action at β = 6 on the 183 × 64 lattice and β = 5.85 on the 143 × 48 lattice. The

corresponding values of the lattice spacing are a−1 = 2.12GeV and a−1 = 1.61GeV, on
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the basis of the Sommer scale defined by r2
0F (r0) = 1.65, r0 = 0.5 fm [24, 25]. (The de-

termination of a−1 from the Sommer scale in quenched QCD is quite accurate and we can

consider the corresponding statistical error negligible with respect to the other statistical

errors in this work.) Thus, the two lattices are of approximately the same physical volume.

For both lattices, we generated 100 gauge configurations using the multihit Metropolis al-

gorithm, with 11,000 lattice upgrades for equilibration and 10,000 lattice upgrades between

subsequent configurations. For each configuration, we performed a gauge transformation

to Landau gauge. We then calculated the quark propagators with source at the origin and

all 12 source color-spin combinations for bare quark mass

am ∈ {0.03, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5, 0.75} (1.1)

on the finer 183 × 64 lattice, and

am ∈ {0.03, 0.04, 0.053, 0.08, 0.106, 0.132, 0.33, 0.66, 0.99} (1.2)

on the coarser 143 × 48 lattice. The calculation of the quark propagators was done with

a conjugate-gradient multimass solver. Technical details of our calculation, as well as rel-

evant formulae, are presented in appendix A. We should mention here, however, some

computational considerations which informed the choices we had to make for our investi-

gation.

The limitations of the quenched approximation are well-known, and forefront calcula-

tions today tend to incorporate dynamical quarks. A simulation with dynamical overlap

quarks on a lattice similar to the one we studied would have required, however, computa-

tional resources at least two orders of magnitude larger than we had available. Moreover,

an efficient calculation of quark propagators with the overlap Dirac operator is a neces-

sary prerequisite for overlap simulations with dynamical quarks. We concluded that a

quenched calculation would be the best option at present, in that it would allow us to

consider a reasonably large lattice and separate the computational problems associated

with the calculation of the overlap operator from those of the dynamical fermion feedback.

An alternative would have been to perform mixed action calculations, i.e. to use overlap

valence quarks in the background of gauge configurations generated with some other type

of dynamical quarks, for example those made available by the MILC collaboration (see

http://qcd.nersc.gov). While that might have been computationally feasible and may be

a good strategy for future calculations, we decided not to proceed in that manner at this

stage in order to avoid the entanglement of two different sets of computational effects as

well as for a more technical reason, on which we shall now elaborate.

The overlap Dirac operator for a massless quark is given by

D =
ρ

a

(

1 + γ5H(ρ)
1

√

H(ρ)2

)

, (1.3)

where H(ρ) stands for the hermitean Wilson-Dirac operator with mass −ρ/a, namely

H(ρ) = γ5DW (ρ)

=
γ5

2

∑

µ

[γµ(∇µ −∇†
µ) + a∇†

µ∇µ] − ργ5

a
(1.4)
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with the forward lattice covariant derivative implicitly defined by

∇µψ(x) =
1

a
[Uµ(x)ψ(x + aµ̂) − ψ(x)] . (1.5)

In terms of D, the overlap Dirac operator for a quark of mass m is then given by [1 −
(am)/(2ρ)]D + m. (See appendix A for more details on the overlap Dirac operator.)

In the calculation of the quark propagators, which is based on a conjugate-gradient

iterative procedure, at each step one must apply the overlap operator to the current iter-

ate. Eq. (1.3) shows that this requires evaluating the action of (H2)−1/2 on a quark field,

for which in turn one must use some suitable approximation to the inverse square root.

Implementing such an approximation, with the required degree of numerical accuracy, be-

comes more and more demanding the larger the condition number of H2, i.e. the larger the

value of the ratio between its largest and smallest eigenvalues. Since the largest eigenvalue

of H2 is bounded, in practice the condition number of the matrix depends on its lowest

eigenvalue, or, equivalently, on the gap in the eigenvalues of H around 0. This gap in turn

depends on the parameter ρ (which must be carefully chosen) as well as, loosely speaking,

on the “amount of disorder” of the gauge configuration. This became quite apparent in

our study, where the calculation of the quark propagators on the smaller 143 × 48 lattice

turned out to be computationally more challenging than the calculation on the 183 × 64

lattice, because of the increased “roughness” of the background gauge configurations at the

smaller value of β. A similar dependence is encountered in the domain-wall formulation,

where the so called “residual mass,” which measures the deviation from chiral symmetry

induced by the truncation in the fifth dimension, is seen to depend on the smoothness of

the gauge configuration [26]. Given the fact that the gap in the eigenvalues of H can be

substantially affected by the choice of action and by the presence or absence of dynamical

fermions, we thought that it would be useful to establish a benchmark by performing a

quenched simulation with the most traditional action, namely the Wilson gauge action.

We thought that demonstrating that the overlap formulation is amenable to precise calcu-

lations on large lattices in this context would be an important step toward the use of more

elaborate gauge actions and/or mixed action calculations.

Another choice we had to make concerned the type of quark sources to use. Calcu-

lations of the lowest masses in the hadron spectrum are made more precise by the use of

extended sources. However, we also wanted to take advantage of our quark propagators for

the study of non-perturbative renormalization and the evaluation of selected matrix ele-

ments, both of which required point-like sources. Since the high cost of evaluating overlap

quark propagators made it impossible for us to use both source terms, we had to adopt

point-like sources. Of course, this did not prevent us from using extended sink operators,

and indeed some of the results we present here have been obtained with extended sinks.

Finally, the non-perturbative renormalization techniques required that the gauge field be

brought to Landau gauge prior to evaluating the propagators. We have implemented this

gauge fixing for all our gauge configurations (of course, after they have been generated),

an additional advantage being that this allowed us to calculate quark-antiquark correlation

functions in the final state as well as diquark propagators.
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Novel results with respect to the calculations presented in [10, 11] have been obtained

for the vector meson spectrum and decay constants, for the baryon spectrum, for correla-

tions among quarks and antiquarks in the final state (which we will refer to as final state

“wave functions”), scaling, quark and diquark propagators, non-perturbative renormaliza-

tion, and meson matrix elements of selected four-quark operators. In this paper, we present

our results for the meson spectrum and decay constants, meson final state wave functions,

the baryon spectrum, scaling from β = 5.85 to β = 6, and quark and diquark propagators.

We will present our results for renormalization constants and matrix elements in a com-

panion paper. We hope to present a more detailed analysis of heavy quark states, as well

as a study of diquark correlations within baryons, in future publications.

In section 2, we present our results for light meson observables on the finer 183 × 64

lattice. We follow in section 3 with our results for the coarser 143 × 48 lattice, as well

as a scaling comparison between the two lattices. As discussed in appendix A, we chose

ρ = 1.4 at β = 6.0 and ρ = 1.6 at β = 5.85 [27, 13] so as to optimize the locality properties

of our overlap operator. That choice induces a lattice spacing dependence which would

have to be parameterized in order to allow for a continuum extrapolation. Since our goal

is only an estimate of possible discretization errors, we do not pursue such an approach

here. In section 4, we present our results for the baryon spectrum on the 183 × 64 lattice

as well as scaling between the two lattices. Finally, in section 5, we present our analysis of

diquark correlation functions and diquark spectra. In the appendices, we give background

information on the overlap Dirac operator, present details of our simulation techniques,

and present data tables for meson and baryon spectra and other observables.

2. Light meson observables on the 18
3 × 64 lattice

2.1 Correlators

We evaluated meson correlators for point source, point sink operators, as well as point

source, extended sink operators. As explained in the introduction, computational limita-

tions did not allow us to calculate correlators with extended sources.

We first consider correlators with point sink operators. We only consider connected

diagrams, so without loss of generality we take quark and antiquark of different flavors f1

and f2. The zero-momentum meson correlator is given by

GAB(t) =

〈

∑

~x

Tr
[

Sf2(0; ~x, t) ΓAγ5 (Sf1(0; ~x, t))† γ5ΓB

]

〉

, (2.1)

where S(0; ~x, t) is the euclidean quark propagator and ΓA and ΓB are the Dirac γ-matrix

combinations associated with the meson states A and B. An example of such a meson

correlator is shown in figure 1.

To obtain ground state meson masses, the zero-momentum meson correlators, which

are even under time-reversal, were fit in an appropriate fitting window to the usual func-

tional form

G(t) =
Z

M
e−MT/2 cosh

[

M

(

T

2
− t

)]

, (2.2)
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)

individual correlators
average correlator

Figure 1: Time dependence of a PP correlator, for quark masses am1 = 0.08, am2 = 0.10.

where M is the meson mass and T is the extent of the lattice in time, and where we will

refer to Z as the correlator matrix element.

For mesons with quarks of non-degenerate mass, we combined the results obtained

by an interchange of the two quark masses. In order to increase statistics, we folded the

meson correlators over the midpoint T/2 and fitted to data below that point. Concerning

statistical errors, the data that enter into the fit (the meson correlators at different values

of time) are highly correlated, but the amount of data is not sufficient for an evaluation of

cross-correlations that would be precise enough for incorporation into the fitting procedure.

Thus, we instead used the bootstrap technique. We found that the error estimates became

stable when the number of bootstrap samples nB reached a value of approximately 200

and used nB = 300 in our calculations. We used the bootstrap method for the estimate of

the statistical errors in most of the results presented in this paper.

Typically, effective mass plots are used to determine the best fitting window {tmin, tmax}
for correlators. Examples of such effective mass plots are shown in figure 2. Using a cosh

fit for the meson correlators allowed a consistent tmax of T/2. In order to pinpoint the

best value for tmin, we considered scans over different values of tmin for a fixed tmax. An

example of such data is shown in figure 3. The value of tmin chosen was the smallest

value (consistent with the errors) before the clear effect of higher states caused the mass

prediction to rise. Consideration of the χ2 value from the fit also was used to confirm the

choice. If possible, a single value of tmin was chosen for all quark mass combinations.

2.2 Meson spectra

The effective mass data and fitting window scans in figures 2 and 3 suggested use of a fit

range 12 ≤ t/a ≤ 32 in order to extract the pseudoscalar mass. For the vector mass, the

fitting range was 8 ≤ t/a ≤ 32. We illustrate in figure 4 our results for the pseudoscalar

spectrum for all possible input quark mass combinations. In the quenched approximation,

the correlator GPP (t) receives contributions proportional to 1/m2 and 1/m from chiral

– 6 –
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Pef

f

PP correlator
PP-SS correlator

Figure 2: Effective mass plateau for different pseudoscalar correlators at am = 0.08.

0 4 8 12 16
t
min

/a

0.36

0.37

0.38

aM
P

Figure 3: Scanning for optimum tmin for PP mass, with am1 = 0.08, am2 = 0.10, and tmax = 32.

zero modes that are not suppressed by the fermionic determinant. These unsuppressed

contributions, which should vanish in the infinite volume limit, could be sizable at finite

volume [13, 26]. A method of handling these quenching artifacts is to consider the difference

of pseudoscalar and scalar meson correlators

GPP−SS(t) = GPP (t) − GSS(t) , (2.3)

since, by chirality, the quenching artifacts cancel in the difference [26]. The results for the

pseudoscalar masses obtained with this correlator are also included in figure 4. With our

large lattice we do not see any significant difference between the results obtained with PP

and PP − SS correlators. Thus, in the remainder of this paper, for what concerns the

pseudoscalar masses and matrix elements, we will only consider the PP correlators, except

where otherwise noted. For economy of figures, we also show in figure 4 the results for

correlators with extended sink operators, which will be discussed in section 2.4.

The chiral behavior of the pseudoscalar spectrum with degenerate quarks is illustrated

in figure 5 for the PP and PP − SS correlators. The lightest data point corresponds

– 7 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
6

0 0.2 0.4 0.6 0.8
am = a(m

1
+m

2
)/2

0

0.5

1

1.5

(a
M

P
)2

PP point sink
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Figure 4: Pseudoscalar meson spectrum for point and extended sinks.

0 0.2 0.4 0.6 0.8 1
am = a(m

1
+m

2
)/2

0

0.5

1

1.5

2

(a
M

P)2

PP-SS correlator
PP correlator

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

Figure 5: Chiral behavior of meson masses. The solid line corresponds to the best fit to eq. (2.4)

in the interval am ≤ 0.1.

roughly to a kaon composed of degenerate quarks of mass am = 0.03 ∼ ams/2, where

am = a(m1 + m2)/2 is the average of the quark and antiquark masses am1 and am2 in

the meson and ams is the bare strange quark mass, all in lattice units. We neglect for the

moment the chiral logarithms discussed in section 2.5 and perform a fit to the linear form

(aMP )2 = A + B(am) , (2.4)

where aMP is the pseudoscalar mass. If we fit all data with am ≤ 0.1 we obtain (see figure 5)

A = 0.0058(15) , B = 1.376(15) (2.5)

for the PP correlator and

A = 0.0059(16) , B = 1.380(17) (2.6)
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Figure 6: Vector meson spectrum for point and extended sinks.

for the PP − SS correlator. (The corresponding values in [10] were A = 0.006(4),

B = 1.39(3) and A = −0.0005(68), B = 1.43(7) for the PP and PP − SS correlators,

respectively.) These results exhibit the good chiral behavior of the overlap formulation.

The non-zero value of the intercept A in eqs. (2.5) and (2.6), albeit small, is however statis-

tically significant. Since our results rule out the possibility that this is due to zero modes,

the small deviation from chiral behavior can originate either from finite volume effects or

chiral logarithms. In a later section we will argue against finite volume effects and show

that it is indeed compatible with chiral logs.

Using a larger lattice than [10] allowed for observation of vector meson states, as shown

in figure 6, with aMV the vector meson mass. The observation of vector meson states was

enhanced by use of extended sink operators, as discussed in section 2.4. Our results for

the meson spectrum are reproduced in the tables presented in appendix B.

2.3 Axial Ward identity and ZA

Exact chiral symmetry implies a conserved axial current, and the associated axial Ward

identity (AWI) predicts a constant value for the ratio

ρ(t) =
G∇0A0P (t)

GPP (t)
. (2.7)

The conserved axial current is a local, but not ultralocal, operator. The ultralocal axial

current

A0 = ψ̄1(x)γ0γ5

[(

1 − a

2ρ
D

)

ψ2

]

(x) (2.8)

differs from the exactly conserved axial current by a finite renormalization factor ZA and

possible corrections O(a2). We calculated the correlator in eq. (2.7) with the current of

eq. (2.8) and using the lattice central difference for ∇0, corrected so as to take into account

the sinh behavior of the correlator. Figure 7 shows the observation of plateaus for all of

our quark masses in the range 8 ≤ t/a ≤ 56.
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Figure 7: AWI ratio as a function of time for all degenerate quark mass combinations.
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Figure 8: Axial Ward identity fit.

The fit shown in figure 8 to

aρ = A + 2(am)/ZA + C(am)2 (2.9)

gives

A = 0.00002(10) , ZA = 1.5555(47) , C = 0.273(32) . (2.10)

(In [10], the results were A = −0.00002(7), ZA = 1.555(4) and C = 0.277(12).) The fact

that the value of A is consistent with zero is an excellent indication of the good chiral

behavior of overlap fermions (compared to the residual mass found in domain-wall fermion

calculations). Also, C is rather small, a possible indication that discretization errors might

be smaller than expected on the basis of purely dimensional arguments.

2.4 Extended sink operators

For some correlators, e.g. the vector V V correlators, the signal for the ground state is small
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Figure 9: PP extended sink correlators G(r, t) for various t/a and am1 = am2 = 0.03.

when point sources and point sinks are used. In particular, the use of point sources and

sinks causes coupling to excited states that do not decay until relatively large values of

tmin. The signal can be improved by using non-local extended operators instead of local

point operators in the representation of the meson [28]. Since, as mentioned in section 1,

our quark propagators were calculated using point sources, we were limited only to the

case of extended sinks. Here we elaborate on our use of extended sink operators.

We consider the correlator

G(r, t) =
∑

~x,~y

〈

Tr
[

Sf2(0; ~x, t) ΓAγ5 (Sf1(0; ~y, t))† γ5ΓB

]

×δ(|~x − ~y| − r)
〉

, (2.11)

where the δ-function is approximated on the lattice with a Kronecker δ, taking into account

the multiplicity of the sites. The quantity r is the separation of the quark and antiquark

at the sink in lattice units. No gauge transport factor is needed to make the non-local

correlator in eq. (2.11) well defined because we calculated the quark propagators in Landau

gauge.

We calculated G(r, t) for PP and V V correlators. A fast Fourier transform (FFT)

was used in order to speed up the calculation; we first Fourier transformed the quark

propagators and then used the convolution theorem. That reduced the double summation

over spatial lattice sites to a single sum, decreasing the computational time by almost three

orders of magnitude [29]. Figure 9 illustrates the average value of the G(r, t) correlators

for pseudoscalar mesons with quark mass am = 0.03, each normalized to unity at r = 0.

A clear ground state “wave function” is apparent after about t/a = 8.

The observation that the wave function settles into a definite profile representing the

contribution of the ground state allows us to use this ground state wave function to con-

struct extended sink correlators. For both the PP and V V correlators, we used the corre-

sponding function ϕ(r) ≡ G(r, 8a) (of course, with different ϕ(r) for the pseudoscalar and

– 11 –
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Figure 10: Comparison of tmin scans for V V point and extended sinks with am1 = am2 = 0.03.
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Figure 11: Vector meson spectrum for am ≤ 0.1.

vector states) to define an extended sink correlator

Gext(t) =
∑

r

ϕ(r)G(r, t) , (2.12)

from which we then extracted the meson mass.

The use of extended sinks was most valuable in the calculation of the vector meson

spectrum, due to the resulting increase in the size of the fitting window (see figure 10).

The point sink and extended sink vector meson spectra are compared in figure 11 for low

quark mass, am ≤ 0.1. A linear fit of the quark-mass dependence of the vector meson mass

obtained from the extended sink data gives

aMV = 0.409(15) + 1.10(13) (am) . (2.13)

We note that the chiral limit value of 0.409(15) is larger than the value 0.366 obtained

using the Sommer scale value for the lattice spacing and the experimental ρ mass. As we

– 12 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
6

0 0.02 0.04 0.06 0.08 0.1
am = a(m

1
+m

2
)/2

1.4

1.45

1.5

1.55

1.6

1.65

(a
M

P
)2 /(

am
)

Figure 12: Evidence for quenched chiral logs.

will discuss in a later section, the discrepancy gives an indication of the systematic error

induced by the quenched approximation.

2.5 Quenched chiral logarithms

A linear fit to the pseudoscalar masses for quark mass am ≤ 0.1 (see figure 5) produces a

line with an intercept which is very small, but statistically different from zero, indicating a

deviation from the chiral behavior (aMP )2 ∝ am. This deviation is put in better evidence

by considering the ratio (aMP )2/am, shown in figure 12, which exhibits a sharp rise at low

am.

Having already ruled out that the non-zero intercept may be due to the effect of fermion

zero modes (the PP and PP −SS correlators produce statistically indistinguishable results

for the intercept), the small deviation from linear behavior could be due to finite volume

effects or to chiral logs. Insofar as finite volume effects are concerned, not having the

resources needed to repeat the calculation on a larger lattice, we can only observe that

the Compton wavelength for our lightest pseudoscalar, M−1
P ' 4.5a, is much smaller than

the size of our lattice, L = 18a (MP L = 4). In the rest of this section, we compare

our results for small quark masses with the predictions from quenched chiral perturbation

theory [30, 31].

We fit the degenerate quark mass results for the pseudoscalar masses to the expres-

sion [30]

(aMP )2 = A(am)1/(1+δ) + B(am)2 , (2.14)

where the leading quenched logarithms proportional to δ = 2m2
0/(Nc(4πfχ)2) have been

resummed into a power behavior and where the term proportional to B parameterizes

possible higher-order corrections in the mass expansion. Here m0 is the singlet contribution

to the η′ mass, Nc = 3 the number of colors, and fχ the value of the pion decay constant

in the chiral limit. The fit is shown in figure 12, and the results for the parameters are

A = 0.680(68), B = 2.98(31), δ = 0.29(5) , (2.15)
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Figure 13: Calculating the quenched chiral log parameter δ with non-degenerate quark masses.

consistent with values of δ presented elsewhere in the literature [32, 26, 33 – 37]. Note that

a fit to (aMP )2 in eq. (2.14) containing an additional constant term C does not change the

central values of A, B, or δ and produces a value for C that is very small and consistent

with zero.

For the non-degenerate quark case, a value for the quenched chiral log parameter δ

was obtained via a fit to the expression y = 1 + δ x [31, 34], where

y =
2m1

m1 + m2

M2
12

M2
11

2m2

m1 + m2

M2
12

M2
22

, (2.16)

x = 2 +
m1 + m2

m1 − m2
ln

(

m2

m1

)

, (2.17)

and Mij is the mass of a pseudoscalar meson composed of quarks with masses mi and mj.

In the derivation of this functional form, the contributions of the kinetic term of the singlet

lagrangian with coupling α, which is subleading in a 1/Nc counting, were neglected, as they

were in eq. (2.14). However, here the quenched chiral log proportional to δ is considered a

correction and dealt with at linear order. In addition, all higher order terms in the chiral

expansion are neglected. The value of δ from our non-degenerate data is

δ = 0.18(8) , (2.18)

which is consistent, within the large statistical errors, with the result in eq. (2.15).

As shown in section 2.2, these chiral logarithms induce only a small deviation from

linear behavior in the relation of (aMP )2 vs. (am) at the values of light quark mass used in

our simulation. Moreover, our statistical errors are still large and our lightest pseudoscalar

meson has a mass around that of the kaon, where the quenched theory is tuned to reproduce

the unquenched theory. Therefore, we take the slope parameter B, obtained from the linear

fit of eqs. (2.4) and (2.5), to be our estimate of the coefficient of the leading term in the

chiral expansion of (aMP )2 as a function of quark mass am.
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line corresponds to a linear fit of the data for afP in the interval am ≤ 0.1; the solid curve represents

the parabola (afP )/(aMP ) = (fK/MK)exp.

2.6 Decay constants and determination of the lattice spacing

We extract the decay constant fP from the relation

2m|〈0|P |π〉| = 2m
√

Z = fP M2
P , (2.19)

where the correlator matrix element Z is defined in eq. (2.2). Our results for the pseu-

doscalar decay constant are reproduced in figure 14, where we plot afP as a function of

(aMP )2, together with a line representing the results of a linear fit, as predicted by NLO

quenched chiral perturbation theory [30, 31]. Following [38], we also determine the lattice

spacing by the method of lattice physical planes. In particular, we are looking for the point

in our lattice parameter space, at which the dimensionless ratio of the pseudoscalar mass

and decay constant is equal to the experimentally determined ratio of the Kaon mass to

decay constant. The parabola in figure 14 shows the line, along which

afP

aMP
=

( fK

mK

)

exp
= 0.323 , (2.20)

where (fK/MK)exp stands for the experimental value of this ratio and we used as experi-

mental data MK = 0.495GeV and fK = 0.16GeV [39]. The intersection of the two lines

gives

aMK = 0.226(6), afK = 0.074(2) , (2.21)

from which, using the input MK = 0.495GeV, one gets

a−1 = 2.19(6)GeV . (2.22)

Using the Sommer scale value of the lattice spacing and the experimental value of the

pion mass, Mπ = 0.135GeV [39], yields

afπ = 0.065(2) , (2.23)
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and thus
fK

fπ
= 1.13(4) , (2.24)

which is below the experimental value of 1.22 but is compatible with other quenched

calculations [42, 40, 43, 44, 41].

The method of lattice physical planes has the advantage of using data in a region of

quark masses accessible to the lattice calculation, avoiding the need to perform a chiral

extrapolation to low quark mass.

The value for a−1 derived with the method of lattice physical planes should be con-

trasted with the one derived from the Sommer scale, namely a−1 = 2.12GeV at β = 6. A

further independent determination of the lattice spacing can be obtained by extrapolating

our results for the vector meson spectrum to the chiral limit. This gives aMρ = 0.409(15)

(see eq. (2.13)), from which one would infer

a−1 = 1.90(4)GeV . (2.25)

The discrepancy among the three values of a obtained above, namely a−1 = 1.90(7)GeV

from the ρ mass, a−1 = 2.12GeV from the Sommer scale, and a−1 = 2.19(6)GeV from the

method of physical planes, is substantially larger than what could be due to statistical er-

rors alone and should be attributed for the most part to the quenched approximation. The

other sources of error, namely those due to the finite lattice spacing, extrapolation to small

quark masses, and finite volume effects, are substantially smaller, as can be inferred from

the data presented in this paper or, insofar as finite volume effects are concerned, argued

from the size of the lattice. Taking the maximum variance in the three numbers above,

∆a−1 = 0.29GeV, as an indication of the systematic errors in the quenched approximation,

the corresponding relative error is ∆a−1/a−1 ' 14%. In the rest of this paper, whenever

we quote quantities in physical units rather than lattice units, we will use the value of a−1

from the Sommer scale for the conversion and systematic errors on such quantities, when

given, will include an estimate of the scale setting ambiguity from the method of physical

planes.

Eq. (2.21) together with the linear fit of eqs. (2.4) and (2.5), which was justified at the

end of section 2.5, gives us

a(ms + m̂) = 0.0661(44) , (2.26)

where ms stands for the bare mass of the s-quark and m̂ for the average bare mass of the

light u and d quarks. We note in passing that using the value of eq. (2.26), together with

our results for the vector meson masses (from the extended sink correlators), give

MK∗

Mρ
= 1.09(5) , (2.27)

which is compatible within errors with the experimental value of 1.15 as well as with other

quenched calculations [40]. Use of the Sommer scale value of the lattice spacing, together

with our data for the pseudoscalar spectrum and the experimental value for the kaon mass,
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Figure 15: Vector decay constant vs. bare quark mass.

produces a slightly larger value for a(ms + m̂) than the one obtained from the method of

physical planes, namely

a(ms + m̂) = 0.0709(17) . (2.28)

We will use this value in the rest of the paper. The variation that the change in a(ms + m̂)

induces in the values already quoted for fK/fπ and MK∗/Mρ are minimal and well below

the statistical errors.

We calculated the vector decay constant using

afV = aZV

√

Z

M2
V

, (2.29)

where Z is the matrix element appearing in the cosh fit of the point source, point sink

vector meson correlator and ZV is the renormalization constant of the ultralocal vector

current. For MV , we used the extended sink vector masses. Like the axial current, the

conserved vector current in the overlap discretization is a local, but not ultralocal, operator,

and the ultralocal current used in the vector meson correlator must be renormalized. The

chiral symmetry properties of the overlap formulation guarantee, however, that ZV = ZA,

and so we can use the result obtained in section 2.3.

Unfortunately, as described in section 2.4, the the coupling of the vector meson ground

state to the point sink is rather small. Therefore it is difficult to find a valid plateau range

especially for small quark masses. In fact, as can be seen in figure 11, only at around

am > 0.08 do the masses extracted from point and extended sink propagators coincide.

We therefore also expect the Z extracted from smaller masses to be heavily affected by

excited state contributions and choose to ignore them. Consequentlly, we only use the

points with quark mass am = 0.08, 0.10, 0.25 in the fit of the afV data. Our results for afV

are shown in figure 15. A linear fit of the data, along with the quark mass of eq. (2.28),

yields

afρ = 0.125(5), afK∗ = 0.128(5),
fK∗

fρ
= 1.03(6) . (2.30)

The ratio fK∗/fρ agrees well with the experimental value 1.03(4) [40].
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Using the Sommer scale value for the lattice spacing, the above results give in turn

fρ = 265(11)MeV, fK∗ = 272(10)MeV . (2.31)

2.7 Quark masses and chiral condensate

Our result for the bare quark masses, a(ms + m̂), can be converted into a corresponding

result for the renormalized quark masses. The bare quark mass m(a) is related to the

renormalized quark mass m̄(µ) by

m̄(µ) = lim
a→0

Zm(aµ)m(a) . (2.32)

The mass renormalization constant Zm is in turn related to the renormalization constant

ZS for the non-singlet scalar density by Zm(aµ) = 1/ZS(aµ). We calculated ZS in the

RI-MOM scheme starting from the identity

ZRI
S (aµ) = lim

m→0
ZA

ΓA(p,m)

ΓS(p,m)

∣

∣

∣

∣

p2=µ2

, (2.33)

where ΓA(p,m) and ΓS(p,m) are suitably defined Green’s functions for the axial current

and the scalar density in Landau gauge and ZA is the renormalization constant for the axial

current calculated in section 2.3. Details of the procedure will be presented in a separate

publication. The Green’s functions in eq. (2.33) have been calculated non-perturbatively

in a window of momenta which extends into the perturbative QCD domain, where contact

can be made with perturbatively calculated renormalization constants. We extracted our

central value of ZS by performing a combined fit to am = 0.03 and am = 0.1 data in

a momentum range p2 = 3 − 14GeV2 using four-loop running [45] and additional (ap)2

terms to account for discretization effects as well as 1/p2 and 1/p4 terms to account for

mass effects and other possible subleading terms in the operator product expansion of the

relevant correlation function. We obtain

ZRI
S (2GeV) = 1.25(2)(2) , (2.34)

where the first error is statistical and the second is an estimate of the systematic error

obtained by varying the fit range and dropping additional terms when indicated. With

this result, one can use the three-loop perturbative calculation of the ratio ZMS
S /ZRI

S [45]

to calculate

ZMS
S (2GeV) = 1.44(2)(3) . (2.35)

Putting together eqs. (2.28) and (2.35), we obtain

(ms + m̂)MS(2GeV) = 105(3)(4)MeV (2.36)

for the sum of strange and light quark masses. Using the value ms/m̂ = 24.4(1.5) from

chiral perturbation theory [46], we obtain

mMS
s (2GeV) = 101(3)(4)MeV (2.37)
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for the strange quark mass, which agrees well with the quenched lattice world average [47,

48, 41].

In the unquenched theory, the bare chiral condensate with valence overlap quarks is

defined as

χ(a) ≡ lim
m→0

1

Nf

〈

ψ̄(0)

[(

1 − a

2ρ
D

)

ψ

]

(0)

〉

, (2.38)

where m is the common mass given to the light quarks. It satisfies the integrated non-

singlet chiral Ward identity

1

Nf

〈

ψ̄(0)

[(

1 − a

2ρ
D

)

ψ

]

(0)

〉

= m
∑

x

〈P (x)P c(0)〉 , (2.39)

where P is the pseudoscalar density composed of two mass-degenerate quarks of different

flavor and P c is the density obtained by interchanging the quark flavors. Inserting a

complete set of states in 〈P (x)P c(0)〉 gives

χ(a) = − lim
m→0

m

M2
P

|〈0|P |P 〉|2 , (2.40)

where MP is the mass of the pseudoscalar state |P 〉. Using

2m|〈0|P |π〉| = fP M2
P , (2.41)

where fP is the pseudoscalar decay constant, yields the familiar Gell-Mann-Oakes-Renner

(GMOR) relation

χ(a) = − lim
m→0

f2
P M2

P

4m
. (2.42)

Due to quenched chiral logarithms, χ(a) is ill-defined in quenched QCD. However, as argued

in section 2.5, the slope parameter B, obtained from the linear fit of eqs. (2.4) and (2.5),

should be a reasonable estimate of limm→0 M2
P /m. Thus, we take

χ(a) = − 1

4
f2

χ B a−1 (2.43)

as our determination of the physical quark condensate. Using our data for fP we get

a3χ(a) = −0.00144(10) (2.44)

or

χ(a) = −0.0137(10)GeV3 . (2.45)

Note that using the value fχ = 0.123GeV [49] would instead give χ(a) = −0.0110(1)GeV3.

Using 〈ψ̄ψ〉MS = ZMS
S χ(a), we finally get

〈ψ̄ψ〉MS(2GeV) = −0.0197(14)(20)GeV3

= −[270(6)(9)MeV]3 . (2.46)

Our results for ms and 〈ψ̄ψ〉 are in good agreement with the results presented in [10]. The

values were mMS
s (2GeV) = 102(6)(18)MeV and 〈ψ̄ψ〉MS(2GeV) = −[267(5)(15)MeV]3.

– 19 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
6

0 0.2 0.4 0.6 0.8
am = a(m

1
+m

2
)/2

0

0.1

0.2

0.3

0.4

0.5

(a
m

) 
Σ x   

 (
<

P(
x)

Pc (0
)>

-<
S(

x)
Sc (0

)>
)

0 0.04 0.08
0

0.02

0.04

0.06

0.08

0.1

Figure 16: Direct determination of the chiral condensate. The curve corresponds to a quadratic

fit of the data according to eq. (2.49) in the interval am ≤ 0.1.

They also agree with the determinations of the condensate using finite-size scaling tech-

niques [13, 16], as well as with the recent continuum-limit calculation of [50], all of which

were obtained using overlap fermions.

One could also attempt a determination of χ directly from a fit to the mass dependence

of the quantity

−a3χ̂(m) = am
∑

x

〈P (x)P c(0)〉

=

〈

ψ̄(0)

[(

1 − a

2ρ
D

)

ψ

]

(0)

〉

. (2.47)

This is, however, made difficult by the very steep dependence of χ̂(m) on m and also by

possible infrared divergent contributions from zero modes. Contrary to the case of the

determination of the pseudoscalar spectrum, where we found the effect of zero modes to

be suppressed because of the large size of our lattice, zero modes are likely to contribute

to the expression in eq. (2.47), because it involves the short distance behavior of the quark

propagator. The contribution from zero modes can be eliminated by instead considering

the subtracted expression

−a3χ̃(m) = am
∑

x

(〈P (x)P c(0)〉 − 〈S(x)Sc(0)〉) , (2.48)

which has the same m → 0 limit as am
∑

x(〈P (x)P c(0)〉 and where the contributions from

chiral zero modes cancel. Of course, in the quenched theory, that quantity diverges in

the chiral limit due to quenched chiral logarithms. However, here again the effect of the

quenched chiral logarithms appear to be small for the light quark masses reached in our

simulation, and we assume that a polynomial extrapolation of our quenched results to the

chiral limit gives a reliable estimate of the physical condensate. Our results for −a3χ̃(m)

are shown in figure 16. A quadratic fit

−a3χ̃(m) = −a3χ + B(am) + C(am)2 (2.49)
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Figure 17: Pseudoscalar effective mass plateau for different channels at am = 0.106.

gives the result

−a3χ = 0.00131(8) , B = 0.806(3) , C = −0.14(1) . (2.50)

The value we obtain in this way for a3χ is compatible with the value in eq. (2.44). The

renormalized value is

〈ψ̄ψ〉MS(2GeV) = −0.0179(11)(18)GeV3

= −[262(5)(9)MeV]3 . (2.51)

3. Meson scaling analysis

Here we present our results for the coarser 143 × 48 lattice, with β = 5.85, as well as

comparisons between the two lattices.

3.1 Meson spectra

We extract meson masses from the correlators GPP (t) and GPP−SS(t). The effective mass

plateau is plotted in figure 17 for quark mass am = 0.106. The data suggest use of a

symmetrized fit range 10 ≤ t/a ≤ 24 in order to extract the pseudoscalar mass.

The extracted meson masses and matrix elements using this fit range are reported

in tables 6 and 7 in appendix B. We neglect for the moment chiral logarithms and perform

a fit to

(aMP )2 = A + B(am) . (3.1)

Fitting all data with am ≤ 0.132, we obtain (see figure 18)

A = 0.0045(15) , B = 1.923(16) (3.2)

in the PP channel and

A = 0.0007(29) , B = 1.959(23) (3.3)
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Figure 19: Vector meson masses on the coarser lattice. The line corresponds to the best fit of the

extended sink data to eq. (3.4) in the interval am ≤ 0.132.

in the PP − SS channel. In general, as for the 183 × 64 lattice, the PP and PP − SS

channel results were compatible on the 143 × 48 lattice, so all further pseudoscalar data,

unless otherwise specified, are from the PP channel.

A fit of the quark-mass dependence of the vector meson mass obtained from the ex-

tended sink data, shown in figure 19, gives

aMV = 0.605(29) + 0.84(22) (am) . (3.4)

We note that the chiral limit value of 0.605(29) is larger than the value 0.483 obtained

using the Sommer scale value of the lattice spacing and the experimental ρ mass. As for

the finer lattice, we expect that this is a result of quenching errors.
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to eq. (2.9) in the interval am ≤ 0.132.

3.2 Axial Ward identity and ZA

Figure 20 shows the ratio ρ(t) = G∇0A0P (t)/GPP (t) for all of our bare quark masses. We

observe a nice plateau for all quark masses, except the largest bare quark mass am = 0.99,

in a range 8 ≤ t ≤ 40. The lack of a plateau for am = 0.99 we believe is due to discretization

effects, since that quark mass is large and comparable to the inverse lattice spacing.

Taking the aforementioned plateau range and performing a fit to eq. (2.9) with all data

for am ≤ 0.132 (figure 21), we obtain

A = 0.00004(5) , ZA = 1.4434(18) , C = 0.381(8) . (3.5)

Our results are compatible with chiral symmetry for all bare quark masses except am = 0.99

and the resulting ZA is in agreement with [51, 52].
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Figure 23: Calculating the quenched chiral log parameter δ.

3.3 Quenched chiral logarithms

A fit of the degenerate quark mass PP channel results to the expression (aMP )2 =

A(am)1/(1+δ) + B(am)2 of eq. (2.14) (see figure 22) gives

A = 1.20(11) , B = 2.66(41) , δ = 0.17(4) . (3.6)

Considering the case of unequal quark masses, a fit to the expressions of eqs. (2.16)

and (2.17) (see figure 23) gives δ = 0.22(4).

As discussed in section 2.5 for the results obtained on the finer lattice, we will take the

slope parameter B, obtained from the linear fit of eqs. (3.1) and (3.2), to be our estimate

of the coefficient of the leading term in the chiral expansion of (aMP )2 as a function of

quark mass am.
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Figure 24: Results for fP and determination of a from the method of physical planes. The dashed

line corresponds to a linear fit of the data for afP in the interval am ≤ 0.132, the solid curve

represents the parabola (afP )/(aMP ) = (fK/MK)exp.

3.4 Decay constants and determination of the lattice spacing

As for the 183 × 64 lattice, we plot in figure 24 the lattice decay constant afP versus

meson masses (aMP )2 as obtained by the simulation. The continuous curve represents the

physical ratio of these quantities, (fK/mK)exp = 0.323. It turns out that the mesons at

our bare quark mass am = 0.053 correspond most closely to the physical kaons.

The intersection of the two curves gives

aMK = 0.343(9) , afK = 0.109(2) , (3.7)

from which, using the input MK = 0.495GeV, one gets

a−1 = 1.44(4)GeV . (3.8)

Use of the Sommer scale value of the lattice spacing and the experimental pion mass

yields

afπ = 0.100(3) (3.9)

and thus
fK

fπ
= 1.09(4) , (3.10)

which agrees with eq. (2.24).

As for the 183×64 lattice, the value for a−1 derived with the method of lattice physical

planes should be contrasted with the one derived from the Sommer scale, namely a−1 =

1.61GeV at β = 5.85. The lattice spacing obtained by extrapolating our results for the

vector meson spectrum to the chiral limit, aMρ = 0.605(29) (see eq. (3.4)), is

a−1 = 1.28(6)GeV . (3.11)
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As for the finer lattice, the discrepancy between the three values for the lattice spacing

can be attributed to the quenched approximation, with a relative error of ∆a−1/a−1 ' 20%.

Eq. (3.7), together with the linear fit of eqs. (3.1) and (3.2), which was argued for at

the end of section 3.3, gives

a(ms + m̂) = 0.1176(59) . (3.12)

As for the finer lattice, we note in passing that the value of eq. (3.12), together with our

results for meson masses, give
MK∗

Mρ
= 1.07(6) . (3.13)

Using the Sommer scale value of the lattice spacing and our pseudoscalar spectrum data

yields a slightly smaller value for a(ms + m̂) of

a(ms + m̂) = 0.0943(15) . (3.14)

We will use this value for the rest of the scaling analysis.

We again calculated the vector decay constant using afV = aZV

√

Z/M2
V . In the fit of

the afV data, we used only the points with quark mass am = 0.106, 0.132, 0.33, since the

point-point correlators give poor results for Z for lower quark masses. Our results for afV

are shown in figure 25. A linear fit of the data, along with the quark mass of eq. (3.14),

yields

afρ = 0.175(13) , afK∗ = 0.179(12) ,
fK∗

fρ
= 1.02(10) . (3.15)

The ratio fK∗/fρ agrees well with both the value on the finer lattice, eq. (2.30), and the

experimental value 1.03(4) [40].

Using the Sommer scale value for the lattice spacing, the above results give in turn

fρ = 281(22)MeV , fK∗ = 287(19)MeV . (3.16)
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3.5 Quark masses and chiral condensate

As in section 2.7, we calculate ZS in the RI-MOM scheme from

ZRI
S (aµ) = lim

m→0
ZA

ΓA(p,m)

ΓS(p,m)

∣

∣

∣

∣

p2=µ2

. (3.17)

Only data with am ≤ 0.132 were used for this purpose. In order to obtain our final result,

we used a combined fit to am = 0.04 and am = 0.132 in the range p2 = 2 − 8GeV2 for

central values and obtained an estimate of the systematic error by varying the fit range

and dropping additional terms when indicated. We fit ZS to the same functional form as

for β = 6.0, yielding

ZRI
S (2GeV) = 1.29(3)(14) (3.18)

and

ZMS
S (2GeV) = 1.48(3)(16) . (3.19)

Putting together eqs. (3.14) and (3.19), we obtain

(ms + m̂)MS(2GeV) = 102(3)(16)MeV (3.20)

for the sum of the strange and light quark masses. As for the finer lattice, using the value

ms/m̂ = 24.4(1.5) from chiral perturbation theory [46], we obtain

mMS
s (2GeV) = 98(3)(15)MeV (3.21)

for the strange quark mass, which agrees well with the quenched lattice world average [47,

48, 41].

Using the GMOR inspired relation of eq. (2.43) and our data for fP we get

a3χ(a) = −0.00473(28) (3.22)

or

χ(a) = −0.0195(12)GeV3 . (3.23)

Note that using the value fχ = 0.123GeV [49] would instead give χ(a) = −0.0117(1)GeV3.

Using 〈ψ̄ψ〉MS = ZMS
S χ(a), we finally get

〈ψ̄ψ〉MS(2GeV) = −0.0292(18)(98)GeV3

= −[308(6)(34)MeV]3 . (3.24)

Our results for the direct calculation of −a3χ̃(m) using

−a3χ̃(m) = am
∑

x

(〈P (x)P c(0)〉 − 〈S(x)Sc(0)〉) (3.25)

are shown in figure 26. The quadratic fit discussed in section 2.7,

−a3χ̃(m) = −a3χ + B(am) + C(am)2 , (3.26)
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Figure 26: Direct determination of the chiral condensate. The curve corresponds to a quadratic

fit of the data according to eq. (3.26) in the interval am ≤ 0.132.

gives the result

−a3χ = 0.00448(22) , B = 0.798(4) , C = −0.14(2) . (3.27)

The value we obtain in this way for a3χ is compatible with the value in eq. (3.22). The

renormalized value is

〈ψ̄ψ〉MS(2GeV) = −0.0277(15)(93)GeV3

= −[302(5)(34)MeV]3 . (3.28)

3.6 Direct comparison of the two lattices

We compare in figures 27–29 our results for the pseudoscalar and vector spectra for the

finer and coarser lattices, using the Sommer scale value for the lattice spacing to express

masses in physical units. We neglect logarithmic effects in the lattice spacing and plot

the mass spectra as a function of bare quark mass. It is interesting to observe that our

results for the mass spectra on the two different lattices are very similar. A qualitatively

equivalent conclusion would be reached with the renormalized quark mass. Our results

suggest that the scaling violations for the quantities that we consider may be quite small.

However, one has to keep in mind, that we only have data for two values of the lattice

spacing and that the mass parameter ρ is not held fixed (for a detailed discussion of this

point see appendix A). Table 1 in appendix B shows a direct comparison of data from the

two lattices.

4. Light baryon spectra

4.1 Baryon spectra

The increased temporal extent of our lattice with respect to that in [10] has made possible

the calculation of the light baryon spectrum. Despite the challenges of limited statistics
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Figure 28: Pseudoscalar PP − SS spectrum comparison.

and the use of point sources and sinks, the lightest octet and decuplet masses were mea-

sured, together with those of the corresponding negative-parity states. For other recent

determinations of the baryon spectrum with chiral fermions, see [20, 53 – 59].

Baryon correlation functions were constructed with the following interpolating opera-

tors. For the octet, we use

Of1f2f3

α = εabc(ψ
f1T
a Cγ5ψ

f2

b )ψf3

c,α , (4.1)

where C = γ2γ4 is the charge conjugation matrix, α is a Dirac index, fi denotes flavor, and

a, b, c denote color. For the decuplet states, we use a notation similar to that in [34] and

define

Γ± = (γ2 ∓ iγ1)/2 , Γ0 = iγ3 . (4.2)
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We work in a representation of the Dirac matrices where γ4 = diag(1, 1,−1,−1). Labeling

the channels by Jz, the decuplet operators are then given by

Df1f2f3

3/2 = εabc(ψ
f1T
a C Γ+ψf2

b )ψf3

c,α=1 , (4.3)

Df1f2f3

−3/2 = εabc(ψ
f1T
a C Γ−ψf2

b )ψf3

c,2 , (4.4)

Df1f2f3

1/2 = εabc[(ψ
f1T
a C Γ0ψ

f2

b )ψf3

c,1

+(ψf1T
a C Γ+ψf2

b )ψf3

c,2]/3 , (4.5)

Df1f2f3

−1/2 = εabc[(ψ
f1T
a C Γ0ψ

f2

b )ψf3

c,2

+(ψf1 T
a C Γ−ψf2

b )ψf3

c,1]/3 . (4.6)

Without loss of generality, we may assume that the three quark flavors are distinct

and for simplicity call the flavors u, d, s. For the results that follow, two quarks are always

taken to have the same mass, and assigning them identical flavor would merely change the

normalization of the correlator. The two possible octet states may be identified with the

Σ0 and Λ0 and are given by

Σα = Odsu
α + Ousd

α , (4.7)

Λα = Odsu
α − Ousd

α − 2Ouds
α . (4.8)

These give identical correlators only when all three quark masses are degenerate. When

propagating forward, the α = 1, 2 components of these operators have positive-parity,

while the α = 3, 4 components have negative-parity. To extract a mass, we must project

out states of definite parity by defining

G±(t) =
∑

x

〈0|Σα(x, t)

(

1 ± γ4

2

)

αβ

Σ̄β(0, 0)|0〉 . (4.9)
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The mass m+ of the positive-parity state is then extracted by fitting Ae−m+t = G+(t) +

G−(T − t) for an appropriate range of times t (where we can neglect the backward-

propagating negative-parity contribution to G+(t) and vice versa). Here T is the total

extent of the lattice in the time direction. Similarly, Ae−m−t = G−(t) + G+(T − t) yields

the mass of the negative-parity state.

For the decuplet we use

(Σ∗)Jz
= Duds

Jz

+ Dsud
Jz

+ Ddsu
Jz

(4.10)

and combine correlators for the four spin states with the corresponding time-reversed corre-

lators of opposite parity. The negative-parity operators are defined by replacing the Dirac

index of ψf3 in Df1f2f3

Jz

according to 1 → 3, 2 → 4.

Here we have followed convention by defining our operators in covariant form. We note,

however, that one may also work directly with components and construct the spin wave

functions explicitly. For example, using the notation |αβγ〉 = εabcψ
u
a,αψd

b,βψs
c,γ, alternate

operators for the two spin-up octet states are

Λ = (|121〉 − |211〉)/
√

2 , (4.11)

Σ = (|121〉 + |211〉 − 2|112〉)/
√

6 . (4.12)

By construction, these have only terms with upper components, whereas the operators given

in covariant form also include terms involving lower components (e.g. |341〉). Contributions

from these additional terms are suppressed since the lower components vanish in the non-

relativistic limit, and the two types of operators were in fact found to give compatible

results for both the octet and decuplet. For the results presented here, only the covariant

forms were used.

Baryon masses were calculated at β = 6 with two degenerate quarks having each

of the five lightest available masses (am1 = am2 = 0.03, 0.04, 0.06, 0.08, 0.1) and for all

available masses of the third quark (including 0.25, 0.5, and 0.75). Errors were estimated

by a bootstrap procedure where correlators for the four or eight spin channels are grouped

by configuration prior to sampling. Fitting windows were chosen based on plots of the

effective mass Meff = ln[C(t − a)/C(t)] for am1 = am2 = am3 = 0.03. The preferred

window (used below for chiral fits) was determined by choosing tmin such that Meff(tmin)

and Meff(tmin + a) are compatible to within 1σ and tmax such that the error in Meff(tmax)

(determined by the bootstrap method) does not exceed 30 percent. The latter criterion

was made more stringent for the positive-parity decuplet state for reasons described below.

The windows chosen on the basis of the lightest quark mass were then used for all other

quark masses.

For the octet states, the windows were 8 ≤ t/a ≤ 16 for JP = 1
2

+
and 6 ≤ t/a ≤ 8 for

JP = 1
2

−
. Data for a range of windows are provided in table 10 in appendix B. In figure 30,

we plot the Λ-like octet masses as a function of total quark mass. Measurements for two

values of tmin are shown in order to give some indication of the dependence on fitting

window. Figure 31 shows the splitting between the two octet states as the mass of the

third quark is increased away from am1 = am2 = 0.03.
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Figure 30: Positive- and negative-parity octet masses for two fitting windows and quark masses

m1 = m2 degenerate.
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Figure 31: Masses of the two octet states with quark masses am1 = am2 = 0.03

Results for the decuplet states are shown in figure 32. The data are reproduced for

a range of fitting windows in table 11. We note that the masses of the heavier states

(JP = 1
2

−
, 3

2

±
) exhibit a substantial dependence on the fitting window. In particular, the

effective mass of the positive-parity decuplet state is seen to first plateau and then, at

large times, continue downward toward the octet mass. This behavior may be explained

by considering what gives rise to the more rapid fall-off of correlators for excited states.

Correlators for the octet and the decuplet are constructed from the same ingredients,

the same quark propagators. The more rapid fall-off of the decuplet arises because of

cancellations between terms. A fit of the correlator gives a reliable determination of the

mass only insofar as these cancellations are not overwhelmed by fluctuations. At large

times, the remaining fall-off is due primarily to the constituent masses of the quarks rather

than the baryon mass itself. For this reason, we have constrained tmax to the value used

for the octet, giving the fitting window 8 ≤ t/a ≤ 16. The uncertainty associated with
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Figure 32: Positive- and negative-parity decuplet masses for two fitting windows and quark masses

m1 = m2 degenerate.

this choice of window is relatively large and of the same order as the statistical error. The

window for the JP = 3
2

−
state is 8 ≤ t/a ≤ 10. We also note that the windows for both

negative-parity states are rather small due to the early onset of fluctuations. For all of these

reasons, our results for the negative-parity octet and decuplet states should be considered

to have indicative value only.

Finally, in figure 33 we plot the masses of the positive-parity states for light degenerate

quark masses am1 = am2 = am3 = 0.03, 0.04, 0.06, 0.08, 0.1. A linear extrapolation to the

chiral limit gives aM8 = 0.559(24) and aM10 = 0.690(32). In this limit, using the value of

aMρ from eq. (2.13), we find

M8/Mρ = 1.37(8) , (4.13)

M10/M8 = 1.23(8) . (4.14)

The limited statistics of our data do not warrant a more complicated fitting form. Exper-

imentally, MN/Mρ = 1.21 and M∆/MN = 1.31 [39].

4.2 Baryon scaling

To investigate scaling, masses of the positive-parity states were also calculated at β = 5.85

on the 143 × 48 lattice. In light of the small fitting windows that had been required on the

finer lattice, fits for the corresponding negative-parity masses were not attempted. Here

we find aM8 = 0.741(28) and aM10 = 1.033(55) in the chiral limit, yielding

M8/Mρ = 1.23(8) , (4.15)

M10/M8 = 1.39(9) . (4.16)

As in the meson analysis, we make use of the Sommer scale, which gives a−1 = 2.12 GeV at

β = 6 and a−1 = 1.61 GeV at β = 5.85. Figure 34 shows the JP = 1
2

+
and JP = 3

2

+
states

for light degenerate quarks on both lattices. Bare masses are rescaled by the corresponding
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Figure 34: Baryon masses with light degenerate quarks at two values of β, with lattice spacing

set by the Sommer scale.

values of a−1. We see that the octet spectrum exhibits good scaling while the decuplet

shows some indication of scaling violation. Comments in section 3.6 regarding renormalized

quark masses, however, apply here as well. Also, as we have already observed, the decuplet

masses suffer from uncertainty in the choice of fitting window and so the apparent lack of

scaling should not be considered to have much significance.

5. Diquark correlations

5.1 Diquark correlators

In the past two years, experiments have produced indications of bound quark systems

beyond the usual quark-antiquark mesons and three quark baryons [60 – 64]. The most

prominent example is the five particle Θ+(1540) pentaquark. The reality of such states
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is in question, since a number of attempts at verifying the pentaquark observations have

failed [65 – 72].

Nevertheless, lattice calculations should provide a definitive check on whether QCD

predicts such states. In certain models [73] of the Θ+(1540), which consists of the bound

valence quarks uudds̄, the four quarks bind into two pairs of diquarks, and the two diquarks

bind with the remaining s̄.

Information on possible diquark states can be obtained by measuring diquark correla-

tions on the lattice [74]. A study of correlations inside baryons, using a method similar to

the one we used to investigate the qq̄ wave functions in section 2.4, is in progress.

The fact that our propagators were calculated in Landau gauge allows us also to

measure quark-quark correlations directly and to fit their decay in euclidean time in terms

of an effective “diquark mass” [75]. Of course, because of the gauge fixing, one should not

consider such a mass parameter to be the mass of a physical state. Nevertheless, it can

produce an indication of the relative strength of quark bindings inside diquark states. We

consider correlations for the diquark operators

Os1s2

c (x) = εcc1c2ψ
s1

c1 (x)ψs2

c2 (x) , (5.1)

and

Os1s2

c1c2 (x) =
1√
2

(ψs1

c1 (x)ψs2

c2 (x) + ψs1

c2 (x)ψs2

c1 (x)) , (5.2)

which are a 3̄ and 6 of color, respectively. Using these operators, we form four types of

diquark states: (i) color 3̄, spin-0, flavor 3̄, (ii) color 3̄, spin-1, flavor 6, (iii) color 6, spin-0,

flavor 6, and (iv) color 6, spin-1, flavor 3̄.

Diquark correlation functions for am1 = 0.03 and am2 = 0.03, the lightest quark mass

combination, are displayed in figures 35–38. Since γ4 was diagonal in the γ-matrix basis

we used, upper components were combined with time-reversed lower components to form

positive-parity states, while mixed upper and lower components were combined to form

negative-parity states. Figure 39 shows a plot of the quark correlator for input quark mass

0.03.

5.2 Diquark spectra

Figure 40 shows the (positive-parity) diquark spectrum and the constituent quark masses

as a function of input quark mass. The fitting window used was 5 ≤ t/a ≤ 15. That figure

also includes a plot of twice the constituent quark mass and extrapolations to zero quark

mass for the “twice quark mass” and 3̄ spin-0 results. Figure 41 shows the same for the

negative-parity states, with a fit for the lowest energy diquark state, the 3̄ spin-1.

It is interesting to observe that the 3̄ diquark spin-0 extrapolation in figure 40 is below

twice the quark mass extrapolation and that the 3̄ diquark spin-0 state is significantly

more strongly bound than the 3̄ diquark spin-1 state. Such a result is consistent with the

predictions of diquark models [76, 73]. However, a much more detailed analysis must be

done, particularly on diquarks within baryon states, in order for rigorous conclusions to be

reached.
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Figure 35: 3̄ positive-parity diquark correlation function; am1 = 0.03, am2 = 0.03.
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Figure 36: 6 positive-parity diquark correlation function; am1 = 0.03, am2 = 0.03.
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Figure 37: 3̄ negative-parity diquark correlation function; am1 = 0.03, am2 = 0.03.
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Figure 38: 6 negative-parity diquark correlation function; am1 = 0.03, am2 = 0.03.
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Figure 39: Quark correlation function for input mass am = 0.03.

The diquark data is shown in tables 14 and 15 in appendix B. Constituent quark

masses, calculated from fits (5 ≤ t/a ≤ 15) to the quark correlators, are shown in table 16

in appendix B.

6. Conclusions

In this article, we have presented results from quenched lattice QCD simulations using the

overlap Dirac operator on an 183×64 lattice at β = 6.0 and a 143×48 lattice at β = 5.85. We

calculated quark propagators with a fixed source point and a variety of quark mass values

for 100 configurations on each lattice, and we have used them to evaluate meson and baryon

observables, quark masses, meson final-state wave functions, and diquark correlations.

One important result of our work is that the calculation of quark propagators with

the overlap operator to a chosen numerical precision has been shown to be feasible us-

ing available techniques, even when dealing with rough background gauge configurations.
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Figure 40: Diquark spectrum vs. input quark mass, positive-parity.
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Figure 41: Diquark spectrum vs. input quark mass, negative-parity.

Such a calculation requires projection of low lying eigenvectors of H2 = (γ5DW )2. Im-

proved algorithms or smoothing techniques both may help to make the calculation less

computationally demanding [77].

Beyond this, our investigation validates the good chiral properties of the overlap op-

erator and suggests good scaling properties between β = 5.85 and β = 6, indicating that

the β = 6 results may already be close to the continuum limit. So far as the actual values

of the observables are concerned, our results suffer from the shortcomings of the quenched

approximation. Nevertheless, from this investigation and others it is clear that it should be

possible to use the overlap operator in dynamical fermion simulations, at the very least with

a mixed action formulation. Work in that direction is beginning. We are also working to

extend our diquark results to diquark correlations in baryons with one heavy and two light

quarks, and we expect to soon publish our results on non-perturbative renormalization,

selected weak matrix elements, and heavy quark observables.
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A. The overlap formalism and simulation details

The forward and backward lattice covariant derivatives are defined by

∇µψ(x) =
1

a
[Uµ(x)ψ(x + aµ̂) − ψ(x)] , (A.1)

and

∇∗
µψ(x) =

1

a
[ψ(x) − U †

µ(x − aµ̂)ψ(x − aµ̂)] , (A.2)

where Uµ(x) are the gauge link fields on the lattice. Let DW denote the Wilson-Dirac

operator

DW =
1

2
γµ(∇µ + ∇∗

µ) − r

2
a∇∗

µ∇µ , (A.3)

with 0 < r ≤ 1 and 0 < ρ < 2r (we used r = 1 in our calculations) and where a is the

lattice spacing.

Neuberger’s overlap Dirac operator is then defined as [78, 79]

D =
ρ

a
(1 + V ) =

ρ

a

(

1 + γ5H
1√

H†H

)

, (A.4)

where

H = γ5(DW − 1

a
ρ) (A.5)

and ρ is a parameter that affects the radius of rescaling of eigenvalues of the overlap

operator in the complex plane as compared to the Wilson-Dirac operator.

The combination of the Wilson gauge action and the (massive) overlap fermionic action

is

S =
6

g2
0

∑

P

[

1 − 1

6
Tr (UP + U †

P )

]

+ψ̄

[(

1 − a

2ρ
m

)

D + m

]

ψ , (A.6)

where UP is the Wilson plaquette, g0 =
√

6/β is the bare coupling constant, the fermion

fields ψ and ψ̄ carry implicit color, spin, and flavor indices, and m is a diagonal matrix of

bare masses (m1,m2, . . . ) in flavor space.

The Ginsparg-Wilson relation [80]

γ5D + Dγ5 =
a

ρ
Dγ5D (A.7)
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is satisfied by the fermionic operator of the overlap action, implying an exact continuous

symmetry of the action in the massless limit [9]. The symmetry can be interpreted as a

lattice form of chiral invariance at finite cutoff,

δψ = γ̂5ψ, δψ̄ = ψ̄γ5 , (A.8)

where

γ̂5 ≡ γ5

(

1 − a

ρ
D

)

, (A.9)

which satisfies γ̂†
5 = γ̂5 and γ̂2

5 = 1. Invariance of the action under non-singlet chiral

transformations, defined including a flavor group generator in eq. (A.8), forbids mixing

among operators of different chirality [81]. Therefore,

• no additive quark mass renormalization is required, and the quark mass which enters

the vector and axial Ward identities is the bare parameter m(a);

• masses and matrix elements are affected only by O(a2) errors and no fine-tuned

parameters are required to remove O(a) effects;

• and the chiral condensate (see section 2.7) does not require subtractions of power

divergent terms (in the chiral limit).

The non-singlet “local” (source and sink at the same point x) bilinear operators we

use are defined by

OΓ(x) = ψ̄1(x)Γ

[(

1 − a

2ρ
D

)

ψ2

]

(x) , (A.10)

where OΓ ∈ {S,P, Vµ, Aµ} correspond to Γ ∈ {11, γ5, γµ, γµγ5}. (We also use non-local

“extended” operators; see section 2.4.) The bilinear operators are subject to multiplicative

renormalization only, i.e. the corresponding renormalized operators are

ÔΓ(x, µ) = lim
a→0

ZΓ(aµ)OΓ(x, a) , (A.11)

where ZΓ(aµ) are the appropriate renormalization constants. Since S,P and Vµ, Aµ belong

to the same chiral multiplets, ZS = ZP and ZV = ZA. Also, flavor symmetry imposes

ZS = 1/Zm, with Zm defined in eq. (2.32).

Using such operators, the following two-point correlation functions (or “correlators”)

can be formed:

GSS(t) =
∑

~x

〈S(~x, t)Sc(~0, 0)〉 , (A.12)

GPP (t) =
∑

~x

〈P (~x, t)P c(~0, 0)〉 , (A.13)

G∇0A0P (t) =
∑

~x

〈∇̄0A0(~x, t)P c(~0, 0)〉 , (A.14)

GV V (t) =
∑

~x,i

〈Vi(~x, t)V c
i (~0, 0)〉 , (A.15)

where we assume the quarks to be of different flavor, c denotes flavor conjugation, i.e. inter-

change of the two flavors, and ∇̄0 is the symmetric lattice derivative in the time direction.
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When appropriate, such correlators are symmetrized around t = T/2, where T is the extent

of the lattice in the time direction.

Our simulations studied quenched QCD with the Wilson gauge action and with Neu-

berger’s overlap Dirac operator for lattice fermions on two different lattices. For both

simulations, we used samples of 100 gauge configurations generated by a 6-hit Metropolis

algorithm with acceptance ' 0.5. The configurations were separated by 10,000 upgrades,

after an initial set of 11,000 upgrades for equilibration.

The first simulation was done on an 183 × 64 lattice, with β = 6, ρ = 1.4, and lattice

spacing a−1 ' 2.0GeV. We calculated overlap quark propagators for a single point source,

for all 12 color-spin combinations and quark masses am = 0.03, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5

and 0.75, using a multi-mass solver.

The second simulation was done on a 143 × 48 lattice, with β = 5.85 and ρ = 1.6.

The second, coarser lattice was chosen to have roughly the same volume as the finer 183 ×
64 lattice, with lattice spacing a−1 ' 1.5GeV, allowing for an investigation of scaling

effects. For the 143 × 48 lattice, we calculated overlap quark propagators again for a

single point source and all 12 color-spin combinations, and with bare quark masses am =

0.03, 0.04, 0.053, 0.08, 0.106, 0.132, 0.33, 0.66, and 0.99. The largest eight of the nine quark

masses correspond approximately to the eight quark masses on the finer lattice.

One question that needs to be addressed when going to a different coupling is how to

set the negative mass parameter ρ of the overlap operator. A possible and valid strategy is,

of course, to keep the value of ρ constant. One has to keep in mind, however, that ρ = 1.4

was chosen to maximize the locality of the overlap operator at one specific coupling (β =

6.0) [27] and, from a technical point of view, is not optimal when going to lower values of β.

We are not restricted, however, to keep ρ fixed. In fact, since a change in ρ corresponds

to an O(a2) redefinition of the overlap operator (as long as we stay within the 1-fermion

sector of the theory), varying ρ(a) = ρ0 +f(a), where f(a) is a smooth monotonic function

in a with lima→0 f(a) = 0, does not change the continuum limit or O(a2) scaling violations

of the theory. It is very reasonable to assume that choosing ρ(a) by demanding optimum

locality of the resulting overlap operator falls into this class of variations, and we therefore

followed this strategy. Apart from better locality, that choice has an additional benefit:

the resulting hermitean Wilson operator is better conditioned and therefore the number of

eigenmodes that need to be treated exactly is smaller, which is particularly important at

the relatively large physical volume we are working at.

We used two algorithms for numerical implementation of the overlap operator. The first

was a Zolotarev optimal rational function [82 – 84] approximation with 12 poles, as detailed

in [11]. The second algorithm was a Chebyshev polynomial approximation [82, 83, 85, 86].

In both cases, we performed a Ritz projection [87] of a certain number nl of the lowest

eigenvectors of H2 = (γ5DW )2, whose contribution to the propagators was calculated

directly. We used the Zolotarev approach for calculating 55 of the quark propagators for

the 183 × 64 lattice, but numerical experimentation showed the Chebyshev approach to be

about 20% faster than the rational function approach. We used the Chebyshev approach

for the balance of the propagators on the 183 ×64 lattice and for all 100 quark propagators

on the 143 × 48 lattice.
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The maximum degree of the Chebyshev polynomials was chosen so as to achieve a

required numerical precision in the range of eigenvalues left over after the projection. We

emphasize that our method of implementing the overlap is exact, up to the chosen numerical

precision ε1 in the calculation of 1/
√

(H2) and the maximum residue ε2 in the calculation

of the propagators. No other approximations are involved in the calculation. We used

as convergence criteria ε1 = 1.0 × 10−8 and ε2 = 1.0 × 10−7. For the 183 × 64 lattice,

we found a projection of nl = 12 low eigenvectors to be adequate, leading to a maximum

degree 100 ∼ 500 in the expansion of the inverse square root into Chebyshev polynomials.

However, for the 143 × 48 lattice we found that, most likely on account of the increased

disorder of the gauge background, the spectrum of H2 generally contained many more low

lying eigenvalues. For some configurations, using nl = 12, as for the larger lattice, led to

a maximum degree of the Chebyshev polynomials as high as ∼ 4000, and in some cases

led to loss of convergence. Therefore, for the 143 × 48 lattice we increased the number of

projected low eigenvectors to nl = 40. This brought the maximum degree of the Chebyshev

polynomials back into the range 100 ∼ 500.

The computations were performed with shared memory Fortran 90 code, optimized

and run on 8, 16, and 32 processor IBM-p690 nodes at BU and NCSA.

B. Tables

Here we present a comparison between data for β = 6 and β = 5.85, as well as results for

meson, baryon, and diquark spectra.

Quantity 183 × 64 lattice 143 × 48 lattice

ZA 1.5555(47) 1.4434(18)

δ (degenerate) 0.29(5) 0.17(4)

δ (non-degenerate) 0.18(8) 0.22(4)

a−1 (Sommer) [24, 25] 2.12GeV 1.61GeV

a−1 (physical planes) 2.19(6)GeV 1.44(4)GeV

a−1 (Mρ) 1.90(4)GeV 1.28(6)GeV

fK/fπ 1.13(4) 1.09(4)

fK∗/fρ 1.03(6) 1.02(10)

MK∗/Mρ 1.09(5) 1.07(6)

ZMS
S (2GeV) 1.44(2)(3) 1.48(3)(16)

(ms + m̂)MS(2GeV) 105(3)(4)MeV 102(3)(16)MeV

mMS
s (2GeV) 101(3)(4)MeV 98(3)(15)MeV

〈ψ̄ψ〉MS(2GeV) −[262(5)(9)MeV]3 −[302(5)(34)MeV]3

r0(ms + m̂)MS(2GeV) 0.265(7)(5) 0.258(7)(3)

r3
0〈ψ̄ψ〉MS(2GeV) −[0.684(16)(4)]3 −[0.78(2)(3)]3

Table 1: Comparison of data for the two lattices.
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tmin tmax am aM a3Z/(2M)

12 32 0.030 0.2186(26) 0.00766(64)

12 32 0.040 0.2468(22) 0.00654(48)

12 32 0.060 0.2960(17) 0.00560(32)

12 32 0.080 0.3396(14) 0.00531(25)

12 32 0.100 0.3795(12) 0.00526(21)

12 32 0.250 0.6281(9) 0.00664(16)

12 32 0.500 0.9805(7) 0.01094(21)

12 32 0.750 1.3046(9) 0.01755(34)

Table 2: 183 × 64 point sink results for PP correlator

tmin tmax am aM a3Z/(2M)

12 32 0.030 0.2192(30) 0.00770(70)

12 32 0.040 0.2474(24) 0.00660(48)

12 32 0.060 0.2967(19) 0.00567(32)

12 32 0.080 0.3403(16) 0.00539(27)

12 32 0.100 0.3803(14) 0.00536(24)

12 32 0.250 0.6304(10) 0.00710(18)

12 32 0.500 0.9838(8) 0.01206(22)

12 32 0.750 1.3084(10) 0.01971(37)

Table 3: 183 × 64 point sink results for PP − SS correlator

tmin tmax am aM a3Z/(2M)

8 32 0.030 0.511(21) 0.00243(43)

8 32 0.040 0.500(16) 0.00207(30)

8 32 0.060 0.500(10) 0.00183(18)

8 32 0.080 0.515(7) 0.00184(13)

8 32 0.100 0.536(6) 0.00195(11)

8 32 0.250 0.728(2) 0.00340(10)

8 32 0.500 1.055(1) 0.00674(14)

8 32 0.750 1.381(1) 0.01204(24)

Table 4: 183 × 64 point sink results for V V correlator
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tmin tmax am aM

4 32 0.030 0.446(13)

4 32 0.040 0.453(10)

4 32 0.060 0.472(8)

4 32 0.080 0.495(6)

4 32 0.100 0.519(5)

4 32 0.250 0.721(2)

4 32 0.500 1.053(1)

4 32 0.750 1.380(1)

Table 5: 183 × 64 extended sink results for V V correlator

tmin tmax am aM a3Z/(2M)

10 24 0.030 0.2513(29) 0.0251(13)

10 24 0.040 0.2858(25) 0.0211(10)

10 24 0.053 0.3252(22) 0.0182(8)

10 24 0.080 0.3959(21) 0.0157(6)

10 24 0.106 0.4557(20) 0.0150(6)

10 24 0.132 0.5101(19) 0.0149(5)

10 24 0.330 0.8502(13) 0.0190(5)

10 24 0.660 1.3268(11) 0.0357(9)

10 24 0.990 1.6488(43) 0.0333(17)

Table 6: 143 × 48 point sink results for PP correlator

tmin tmax am aM a3Z/(2M)

10 24 0.030 0.2458(51) 0.0232(20)

10 24 0.040 0.2821(43) 0.0202(15)

10 24 0.053 0.3228(36) 0.0177(12)

10 24 0.080 0.3950(29) 0.0155(8)

10 24 0.106 0.4555(25) 0.0149(7)

10 24 0.132 0.5106(23) 0.0149(6)

10 24 0.330 0.8532(13) 0.0200(6)

10 24 0.660 1.3317(11) 0.0395(11)

10 24 0.990 1.6595(41) 0.0420(21)

Table 7: 143 × 48 point sink results for PP − SS correlator
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tmin tmax am aM a3Z/(2M)

8 24 0.030 0.775(81) 0.0151(40)

8 24 0.040 0.732(54) 0.0104(22)

8 24 0.053 0.701(36) 0.0076(14)

8 24 0.080 0.692(21) 0.0060(8)

8 24 0.106 0.708(15) 0.0058(6)

8 24 0.132 0.732(11) 0.0058(5)

8 24 0.330 0.984(3) 0.0096(3)

8 24 0.660 1.433(2) 0.0212(5)

8 24 0.990 1.857(4) 0.0463(20)

Table 8: 143 × 48 point sink results for V V correlator

tmin tmax am aM

4 24 0.030 0.650(25)

4 24 0.040 0.645(21)

4 24 0.053 0.646(17)

4 24 0.080 0.664(12)

4 24 0.106 0.689(9)

4 24 0.132 0.719(8)

4 24 0.330 0.979(3)

4 24 0.660 1.433(2)

4 24 0.990 1.877(4)

Table 9: 143 × 48 extended sink results for V V correlator

am aM

6 − 16 8 − 14 8 − 16 8 − 18 10 − 16

0.030 0.650(19) 0.625(22) 0.627(23) 0.632(24) 0.626(32)

0.040 0.680(14) 0.658(16) 0.658(17) 0.662(17) 0.653(22)

0.060 0.7353(97) 0.717(11) 0.714(11) 0.714(11) 0.705(14)

0.080 0.7854(77) 0.7691(87) 0.7634(88) 0.7606(88) 0.753(11)

0.100 0.8327(65) 0.8172(74) 0.8103(74) 0.8052(74) 0.7991(89)

Table 10: Baryon octet spectrum at β = 6.0 for multiple fitting windows
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am aM

6 − 16 8 − 14 8 − 16 8 − 18 10 − 16

0.030 0.857(26) 0.785(31) 0.751(32) 0.728(34) 0.643(36)

0.040 0.863(21) 0.805(23) 0.775(23) 0.757(24) 0.694(25)

0.060 0.889(16) 0.846(15) 0.824(15) 0.812(16) 0.774(17)

0.080 0.920(12) 0.885(12) 0.868(12) 0.859(12) 0.832(13)

0.100 0.953(10) 0.9222(94) 0.9085(96) 0.901(10) 0.881(11)

Table 11: Baryon decuplet spectrum at β = 6.0 for multiple fitting windows

am aM

6 − 11 7 − 10 7 − 11 7 − 12 8 − 11

0.030 0.805(35) 0.796(43) 0.813(48) 0.817(52) 0.839(70)

0.040 0.840(23) 0.833(27) 0.840(30) 0.838(33) 0.849(41)

0.053 0.879(15) 0.872(17) 0.873(19) 0.868(21) 0.873(25)

0.080 0.9526(94) 0.946(11) 0.941(11) 0.935(12) 0.935(13)

0.106 1.0196(78) 1.0130(93) 1.0065(88) 0.9996(88) 0.998(10)

0.132 1.0842(69) 1.0772(82) 1.0700(76) 1.0630(74) 1.0602(84)

Table 12: Baryon octet spectrum at β = 5.85 for multiple fitting windows

am aM

6 − 9 7 − 9 7 − 10 7 − 11 8 − 10

0.030 1.131(52) 1.106(77) 1.123(90) 1.131(98) 1.17(17)

0.040 1.140(38) 1.110(53) 1.118(60) 1.123(65) 1.135(94)

0.053 1.153(28) 1.121(37) 1.121(40) 1.121(41) 1.118(54)

0.080 1.190(18) 1.157(22) 1.148(22) 1.142(21) 1.133(26)

0.106 1.233(13) 1.201(15) 1.189(15) 1.180(14) 1.171(16)

0.132 1.279(11) 1.248(12) 1.235(11) 1.224(10) 1.217(12)

Table 13: Baryon decuplet spectrum at β = 5.85 for multiple fitting windows
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color spin am aM

3̄ 0 0.030 0.430(13)

3̄ 0 0.040 0.453(11)

3̄ 0 0.060 0.494(8)

3̄ 0 0.080 0.531(7)

3̄ 1 0.030 0.551(10)

3̄ 1 0.040 0.560(8)

3̄ 1 0.060 0.585(6)

3̄ 1 0.080 0.612(5)

6 0 0.030 0.548(16)

6 0 0.040 0.555(14)

6 0 0.060 0.579(11)

6 0 0.080 0.609(10)

6 1 0.030 0.542(15)

6 1 0.040 0.552(12)

6 1 0.060 0.582(9)

6 1 0.080 0.616(8)

Table 14: Degenerate (m1 = m2) diquark spectrum, positive-parity.

color spin am aM

3̄ 0 0.030 0.795(61)

3̄ 0 0.040 0.799(53)

3̄ 0 0.060 0.818(43)

3̄ 0 0.080 0.842(37)

3̄ 1 0.030 0.551(29)

3̄ 1 0.040 0.560(23)

3̄ 1 0.060 0.585(17)

3̄ 1 0.080 0.612(14)

6 0 0.030 0.898(104)

6 0 0.040 0.918(88)

6 0 0.060 0.935(67)

6 0 0.080 0.947(55)

6 1 0.030 0.542(38)

6 1 0.040 0.552(31)

6 1 0.060 0.582(23)

6 1 0.080 0.616(20)

Table 15: Degenerate (m1 = m2) diquark spectrum, negative-parity.
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am aM

0.030 0.229(5)

0.040 0.235(5)

0.060 0.248(4)

0.080 0.261(4)

Table 16: Constituent quark mass
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